domingo, 4 de diciembre de 2011

DIAC

El DIAC (Diodo para Corriente Alterna) es un dispositivo semiconductor de dos conexiones. Es un diodo bidireccional disparable que conduce la corriente sólo tras haberse superado sutensión de disparo, y mientras la corriente circulante no sea inferior al valor característico para ese dispositivo. El comportamiento es fundamentalmente el mismo para ambas direcciones de la corriente. La mayoría de los DIAC tienen una tensión de disparo de alrededor de 30 V. En este sentido, su comportamiento es similar a una lámpara de neón.
Los DIAC son una clase de tiristor, y se usan normalmente para disparar los triac, otra clase de tiristor.
Es un dispositivo semiconductor de dos terminales, llamados ánodo y cátodo. Actúa como un interruptor bidireccional el cual se activa cuando el voltaje entre sus terminales alcanza el voltaje de ruptura, dicho voltaje puede estar entre 20 y 36 volts según la referencia.

DIAC de tres capas
Existen dos tipos de DIAC:
§  DIAC de tres capas: Es similar a un transistor bipolar sin conexión de base y con las regiones de colector y emisor iguales y muy dopadas. El dispositivo permanece bloqueado hasta que se alcanza latensión de avalancha en la unión del colector. Esto inyecta corriente en la base que
vuelve el transistor conductor, produciéndose un efecto regenerativo. Al ser un dispositivo simétrico, funciona igual en ambas polaridades, intercambiando el emisor y colector sus funciones.

TRIAC

acontinuacion mostraremos el símbolo utilizado para representar el TRIAC, así como su estructura interna en dos dimensiones. Como se ha mencionado, el TRIAC permite la conducción de corriente de ánodo a cátodo y viceversa, de ahí que los terminales no se denominen ánodo y cátodo, sino simplemente ánodo 1 (A1) y ánodo 2 (A2). En algunos textos dichos terminales se denominan MT1 y MT2.
Como en el caso del SCR, tenemos un terminal de control denominado puerta que nos permite la puesta en conducción del dispositivo en ambos sentidos de circulación. Si bien el TRIAC tiene varios mecanismos de encendido (con corrientes positivas y negativas), lo más usual es inyectar corriente por la puerta en un sentido para provocar la puesta en conducción.


Una de las ventajas de este dispositivo es que es muy compacto, requiriendo únicamente un único circuito de control, dado que sólo dispone de un terminal de puerta. Sin embargo, tal y como está fabricado, es un dispositivo con una capacidad de control de potencia muy reducida. En general está pensado para aplicaciones de pequeña potencia, con tensiones que no superan los 1000V y corrientes máximas de 15A. Es usual el empleo de TRIACs en la fabricación de electrodomésticos con control electrónico de velocidad de motores y aplicaciones de iluminación, con potencias que no superan los 15kW. La frecuencia máxima a la que pueden trabajar es también reducida, normalmente los 50-60Hz de la red monofásica.
El TRIAC (“Triode of Alternating Current”) es un tiristor bidireccional de tres terminales. Permite el paso de corriente del terminal A1 al A2 y vivecersa, y puede ser disparado con tensiones de puerta de ambos signos.
Cuando se trabaja con corriente alterna, es interesante poder controlar los dos sentidos de circulación de la corriente. Evidentemente, con un SCR, sólo podemos controlar el paso de corriente en un sentido. Por tanto uno de los motivos por el cual los fabricantes de semiconductores han diseñado el TRIAC ha sido para evitar este inconveniente. El primer TRIAC fue inventado a finales de los años 60. Simplificando su funcionamiento, podemos decir que un TRIAC se comporta como dos SCR en antiparalelo (tiristor bidireccional). De esta forma, tenemos control en ambos sentidos de la circulación de corriente.

GTO

principio de funcionamiento:

El GTO tiene una estructura de 4 capas, típica de los componentes de la familia de los tiristores. Su característica principal es su capacidad de entrar en conducción y bloquearse a través de señales adecuadas en el terminal de puerta G.
El mecanismo de disparo es parecido al del SCR: suponiendo que está directamente polarizado, cuando se le inyecta corriente a la puerta, circula corriente entre puerta y cátodo. Como la capa de la puerta es suficientemente fina, gran parte de los portadores se mueven hasta la capa N adyacente, atravesando la barrera de potencial y siendo atraídos por el potencial del ánodo, dando inicio a la corriente anódica. Si ésta corriente se mantiene por encima de la corriente de mantenimiento, el dispositivo no necesita de la señal de puerta para mantenerse en conducción.A pesar de que el GTO fue inventado en el inicio de la década de los años 60, ha sido poco empleado debido a sus reducidas prestaciones. Con el avance de la tecnología en el desarrollo de dispositivos semiconductores, se han encontrado nuevas soluciones para mejorar tales componentes que hacen que hoy ocupen una franja significa dentro de la electrónica de potencia, especialmente en aquellas aplicaciones de elevada potencia, con dispositivos que alcanzan los 5000 V y los 4000 A.
Como se ha visto en los apartados anteriores, uno de los inconvenientes de los tiristores tipo SCR o TRIAC es que no tenemos control externo por parte del usuario del paso de conducción a bloqueo. Para aquellas aplicaciones en las que nos interese poder bloquear un interruptor de potencia en cualquier instante es necesario utilizar otro tipo de semiconductores diferentes a los SCRs o TRIACs.

El GTO es un tiristor con capacidad externa de bloqueo. La puerta permite controlar las dos transiciones: paso de bloqueo a conducción y viceversa.

Transistor de Potencia (TBP)

Más conocidos como BJTs (“Bipolar Junction Transistors”), básicamente se trata de interruptores de potencia controlados por corriente. Como el lector recordará existen dos tipos fundamentales, los “npn” y los “pnp”, si bien en Electrónica de Potencia los más usuales y utilizados son los primeros.

principio de funcionamiento
En la realidad, la estructura interna de los transistores bipolares de potencia (TBP) es diferente. Para soportar tensiones elevadas, existe una capa intermediaria del colector, con baja concentración de impurezas (bajo dopado), la cual define la tensión de bloqueo del componente.


Los bordes redondeados de la región de emisor permiten una homogeneización del campo eléctrico, necesaria para el mantenimiento de polarizaciones inversas débiles entre base y emisor. El TBP no soporta tensiones en el sentido opuesto porque la elevada concentración de impurezas (elevado dopado) del emisor provoca la ruptura de J1 en bajas tensiones (5 a 20 V).

La preferencia en utilizar TBP tipo NPN se debe a las menores pérdidas con relación a los PNP, lo cual es debido a la mayor movilidad de los electrones con relación a los agujeros, reduciendo, principalmente, los tiempos de conmutación del componente.

Características estáticas

Los transistores bipolares son fáciles de controlar por el terminal de base, aunque el circuito de control consume más energía que el de los SCR. Su principal ventaja es la baja caída de tensión en saturación. Como inconvenientes destacaremos su poca ganancia con v/i grandes, el tiempo de almacenamiento y el fenómeno de avalancha secundaria.

El transistor, fundamentalmente, puede trabajar en tres zonas de funcionamiento bien diferenciadas, en función de la tensión que soporta y la corriente de base inyectada:
- Corte: no se inyecta corriente a la base del transistor. Éste se comporta como un interruptor abierto, que no permite la circulación de corriente entre colector y emisor. Por tanto, en ésta zona de funcionamiento el transistor está desactivado o la corriente de base no es suficiente para activarlo teniendo ambas uniones en polarización inversa.
Activa: se inyecta corriente a la base del transistor, y éste soporta una determinada tensión entre colector y emisor. La corriente de colector es proporcional a la corriente de base, con una constante de roporcionalidad denominada ganancia del transistor, típicamente representada por las siglas F β o F h . Por tanto, en la región activa, el transistor actúa como un amplificador, donde la corriente del colector queda amplificada mediante la ganancia y el voltaje vCE disminuye con la corriente de base: la unión CB tiene polarización inversa y la BE
directa.
- Saturación: se inyecta suficiente corriente a la base para disminuir la vCE y conseguir que el transistor se comporte como un interruptor cuasi ideal. La tensión que soporta entre sus terminales es muy pequeña y depende del transistor. En éste caso ambas uniones están polarizadas directamente. Se suele hablar de la tensión colector-emisor en saturación.

-coneccion darlington:

Otra diferencia importante es que la ganancia de un transistor de potencia elevada suele ser bastante pequeña. Ello conlleva que debido a las grandes corrientes de colector que se deben manejar, la corriente por la base debe ser también elevada, complicando el circuito de control de base del transistor. Para transistores de señal se suelen obtener valores de ganancia entorno a 200, mientras que para transistores de potencia es difícil llegar a obtener valores de ganancia de 50. Si por ejemplo un TBP con β = 20 va a conducir una corriente de colector de 60 A, la corriente de base tendría que ser mayor que 3 A para saturar el transistor.
El circuito de excitación (“driver”) que proporciona esta alta corriente de base es un circuito de potencia importante por sí mismo. Para evitar esta problemática se suelen utilizar transistores de potencia en configuraciones tipo Darlington, donde se conectan varios transistores de una forma estratégica para aumentar la ganancia total del transistor.

GBT (Insulated Gate Bipolar Transistor)

I

Es un dispositivo híbrido, que aprovecha las ventajas de los transistores descritos en los apartados anteriores, o sea, el IGBT reúne la facilidad de disparo de los MOSFET con las pequeñas pérdidas en conducción de los BJT de potencia. La puerta está aislada del dispositivo, con lo que se tiene un control por tensión relativamente sencillo. Entre el colector y el emisor se tiene un comportamiento tipo bipolar, con lo que el interruptor es muy cercano a lo ideal.

Su velocidad de conmutación, en principio, similar a la de los transistores bipolares, ha crecido en los últimos años, permitiendo que funcione a centenas de kHz, en componentes para corrientes del orden de algunas decenas de Amperios. 
principio de funcionamiento 
La estructura del IGBT es similar a la del MOSFET, pero con la inclusión de una capa que forma el colector del IGBT, Gracias a la estructura interna puede soportar tensiones elevadas, típicamente 1200V y hasta 2000V (algo impensable en los MOSFETs), con un control sencillo de tensión de puerta. La velocidad a la que pueden trabajar no es tan elevada como la de los MOSFETs, pero permite trabajar en rangos de frecuencias medias, controlando potencias bastante elevadas.
En términos simplificados se puede analizar el IGBT como un MOSFET en el cual la región N- tiene su conductividad modulada por la inyección de portadores minoritarios (agujeros), a partir de la región P+, una vez que J1 está directamente polarizada. Esta mayor conductividad produce una menor caída de tensión en comparación a un MOSFET similar.
El control del componente es análogo al del MOSFET, o sea, por la aplicación de una
polarización entre puerta y emisor. También para el IGBT el accionamiento o disparo se hace
por tensión.
La máxima tensión que puede soportar se determina por la unión J2 (polarización directa) y por J1 (polarización inversa). Como J1 divide 2 regiones muy dopadas, se puede concluir que un IGBT no soporta tensiones elevadas cuando es polarizado inversamente.
Los IGBT presentan un tiristor parásito. La construcción del dispositivo debe ser tal que evite el disparo de este tiristor, especialmente debido a las capacidades asociadas a la región P. Los componentes modernos no presentan problemas relativos a este elemento indeseado.

SCR (Rectificador Controlado de Silicio)

De las siglas en inglés “Silicon Controlled Rectifier”, es el miembro más conocido de la familia de los tiristores. En general y por abuso del lenguaje es más frecuente hablar de tiristor que de SCR.
El SCR es uno de los dispositivos más antiguos que se conocen dentro de la Electrónica de Potencia (data de finales de los años 50). Además, continua siendo el dispositivo que tiene mayor capacidad para controlar potencia (es el dispositivo que permite soportar mayores tensiones inversas entre sus terminales y mayor circulación de corriente).
El SCR está formado por cuatro capas semiconductoras, alternadamente P-N-P-N, Dispositivos de Electrónica de Potencia teniendo 3 terminales: ánodo (A) y cátodo (K), por los cuales circula la corriente principal, y
la puerta (G) que, cuando se le inyecta una corriente, hace que se establezca una corriente en sentido ánodo-cátodo.

caracteristicas tension-corriente:

En su estado de apagado o bloqueo (OFF), puede bloquear una tensión directa y no conducir corriente. Así, si no hay señal aplicada a la puerta, permanecerá en bloqueo independientemente del signo de la tensión VAK. El tiristor debe ser disparado o encendido al estado de conducción (ON) aplicando un pulso de corriente positiva en el terminal de puerta, durante un pequeño intervalo de tiempo, posibilitando que pase al estado de bloqueo directo. La caída de tensión directa en el estado de conducción (ON) es de pocos voltios (1-3 V).
Una vez que el SCR empieza a conducir, éste permanece en conducción (estado ON), aunque la corriente de puerta desaparezca, no pudiendo ser bloqueado por pulso de puerta. Únicamente cuando la corriente del ánodo tiende a ser negativa, o inferior a un valor umbral, por la influencia del circuito de potencia, el SCR pasará a estado de bloqueo.


1. Zona de bloqueo inverso (vAK < 0): Ésta condición corresponde al estado de no conducción en inversa, comportándose como un diodo.
2. Zona de bloqueo directo (vAK > 0 sin disparo): El SCR se comporta como un circuito abierto hasta alcanzar la tensión de ruptura directa.
3. Zona de conducción (vAK > 0 con disparo): El SCR se comporta como un interruptor cerrado, si una vez ha ocurrido el disparo, por el dispositivo circula una corriente superior a la de enclavamiento. Una vez en conducción, se mantendrá en dicho estado si el valor de la corriente ánodo cátodo es superior a la corriente de mantenimiento.
- disparo por tension exesiva:

Cuando está polarizado directamente, en el estado de bloqueo, la tensión de polarización se aplica sobre la unión J2 (ver figura 2.4). El aumento de la tensión VAK lleva a una expansión de la región de transición tanto para el interior de la capa de la puerta como para la capa N adyacente. Aún sin corriente de puerta, por efecto térmico, siempre existirán cargas libres que penetren en la región de transición (en este caso, electrones), las cuales son celeradas por el campo eléctrico presente en J2. Para valores elevados de tensión (y, por tanto, de campo eléctrico), es posible iniciar un proceso de avalancha, en el cual las cargas aceleradas, al chocar con átomos vecinos, provoquen la expulsión de nuevos portadores que reproducen el proceso. Tal fenómeno, desde el punto de vista del comportamiento del flujo de cargas por la unión J2, tiene el efecto similar al de una inyección de corriente por la puerta, de modo que, si al iniciar la circulación de corriente se alcanza el límite IL, el dispositivo se mantendrá en conducción.
- disparo por impulso de puerta:

Siendo el disparo a través de la corriente de puerta la manera más usual de disparar el SCR, es importante el conocimiento de los límites máximos y mínimos para la tensión VGK y la corriente IG.

MOSFET (Metal-Oxide-Semiconductor Field Effect Transistors)

QUÉ ES?
MOSFET significa "FET de Metal Oxido Semiconductor" o FET de compuerta aislada, es un arreglo de cientos de transistores integrados en un sustrato de silicio. Cada uno entrega una parte a la corriente total.
Uno de los motivos que impulsó su desarrollo es que los transistores bipolares presentan limitaciones. Es un dispositivo controlado por tensión, Es un dispositivo extremadamente veloz en virtud a la pequeña corriente necesaria para estrangular o liberar el canal. Por esta facultad se los usa ampliamente en conmutación. Su velocidad permite diseñar etapas con grandes anchos de banda minimizando, así, lo que se denomina distorsión por fase.
La característica constructiva común a todos los tipos de transistor MOS es que el terminal de puerta (G) está formado por una estructura de tipo Metal/Óxido/Semiconductor. El óxido es aislante, con lo que la corriente de puerta es prácticamente nula, mucho menor que en los JFET. Por ello, los MOS se emplean para tratar señales de muy baja potencia.

Tiene una versión NPN y otra PNP. El NPN es llamado MOSFET de canal N y el PNP es llamado MOSFET de canal P, En el MOSFET de canal N la parte "N" está conectado a la fuente (source) y al drenaje (drain)
En el MOSFET de canal P la parte "P" está conectado a la fuente (source) y al drenaje (drain):
Así como podemos decir que el transistor bipolar se controla por corriente, los MOSFET son transistores controlados por tensión. Ello de debe al aislamiento (óxido de Silicio) de la puerta respecto al resto del dispositivo. Existen dos tipos básicos de MOSFET, los de canal n y los de canal p, si bien en Electrónica de Potencia los más comunes son los primeros, por presentar menores pérdidas y mayor velocidad de conmutación, debido a la mayor movilidad de los electrones con relación a los agujeros.


-principio de funcionamiento:
El terminal de puerta G (Gate) está aislado del semiconductor por óxido de silicio (SiO2). La unión PN define un diodo entre la Fuente S (Source) y el Drenador D (Drain), el cual conduce cuando VDS < 0. El funcionamiento como transistor ocurre cuando VDS > 0.
Cuando una tensión VGS > 0 es aplicada, el potencial positivo en la puerta repele los agujeros en la región P, dejando una carga negativa, pero sin portadores libres. Cuando esta tensión alcanza un cierto valor umbral (VT), electrones libres (generados principalmente por efecto térmico) presentes en la región P son atraídos y forman un canal N dentro de la región P, por el cual se hace posible la circulación de corriente entre D y S. Aumentando VGS, más portadores son atraídos, ampliando el canal, reduciendo su resistencia (RDS), permitiendo el aumento de ID. Este comportamiento caracteriza la llamada “región óhmica”.
imagen
                              https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgELUfSwsfx_f0u_5_8BvLU3XgTpV9fRpAdEykcJnd7B5aJ6OsVwfxs8XqnU4b3k9pCTJ2FgQbWzRPlhNFj9gydcohOKPRcmEcAbOiVPPh8wbSsA7EUyu5SzhRcNf7ttTCj30kS61BAO4U/s1600/mosfet1.jpg